A Nonlinear Elliptic PDE with Two Sobolev–Hardy Critical Exponents

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents

In this paper, we consider the following PDE involving two Sobolev-Hardy critical exponents,

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Quasilinear Elliptic Equations with Critical Exponents

has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...

متن کامل

A nonlinear general Neumann problem involving two critical exponents

We discuss the existence of solutions to the following nonlinear problem involving two critical Sobolev exponents  −div(p(x)∇u) = β|u|2−2u+ f(x, u) in Ω, u 6≡ 0 in Ω, ∂u ∂ν = Q(x)|u| 2∗−2u on ∂Ω, where β ≥ 0, Q is continuous on ∂Ω, p ∈ H(Ω) is continuous and positive in Ω̄ and f is a lower-order perturbation of |u|2−1 with f(x, 0) = 0.

متن کامل

Two Dimensional Elliptic Equation with Critical Nonlinear Growth

We study the asymptotic behavior of solutions to a semilinear elliptic equation associated with the critical nonlinear growth in two dimensions. { −∆u = λueu , u > 0 in Ω, u = 0 on ∂Ω, (1.1) where Ω is a unit disk in R2 and λ denotes a positive parameter. We show that for a radially symmetric solution of (1.1) satisfies ∫ D |∇u| dx → 4π, λ ↘ 0. Moreover, by using the Pohozaev identity to the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2011

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-011-0467-2